Answer
$\dfrac{(x+9)^2}{100}+\dfrac{(y+5)^2}{36}=1$ ; Ellipse
Work Step by Step
Given: $9x^2+25y^2+162x+250y+454=0$
$[9x^2+(2)(27)(3x)+729]+25(y^2+5y+25)=729+625-454$
This gives:
$(3x+27)^2+25(y+5)^2=(30)^2$
Thus, we have
$\dfrac{(x+9)^2}{100}+\dfrac{(y+5)^2}{36}=1$
This is the standard form of an Ellipse.