Answer
See below
Work Step by Step
Given: $f_n=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^n-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^n$
The first five terms are:
$a_1=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^n-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^n\\=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^1-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^1\\=\frac{1}{\sqrt 5}(\sqrt 5)\\=1$
$a_2=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^n-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^n\\=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^2-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^2\\=\frac{1}{\sqrt 5}(\sqrt 5)\\=1$
$a_3=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^n-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^n\\=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^3-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^3\\=\frac{1}{\sqrt 5}(4.489856)\\=2$
$a_4=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^n-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^n\\=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^4-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^4\\=\frac{1}{\sqrt 5}(6.73971)\\=3$
$a_5=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^n-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^n\\=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^5-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^5\\=\frac{1}{\sqrt 5}(11.24932)\\=5$