Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 12 Sequences and Series - 12.5 Use Recursive Rules with Sequences and Functions - 12.5 Exercises - Problem Solving - Page 832: 46

Answer

See below

Work Step by Step

Given: $f_n=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^n-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^n$ The first five terms are: $a_1=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^n-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^n\\=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^1-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^1\\=\frac{1}{\sqrt 5}(\sqrt 5)\\=1$ $a_2=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^n-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^n\\=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^2-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^2\\=\frac{1}{\sqrt 5}(\sqrt 5)\\=1$ $a_3=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^n-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^n\\=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^3-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^3\\=\frac{1}{\sqrt 5}(4.489856)\\=2$ $a_4=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^n-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^n\\=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^4-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^4\\=\frac{1}{\sqrt 5}(6.73971)\\=3$ $a_5=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^n-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^n\\=\frac{1}{\sqrt 5}(\frac{1+\sqrt 5}{2})^5-\frac{1}{\sqrt 5}(\frac{1-\sqrt 5}{2})^5\\=\frac{1}{\sqrt 5}(11.24932)\\=5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.