Answer
$a_n=2(4)^{n-1}$
Work Step by Step
Here, we have $a_n= a_1r^{(n-1)}$ for the Geometric series.
We are told that $a_4=128$ and $r=4$
Here, we have $a_4=(a_1) \times (4)^{(4-1)} \implies 128=(a_1) \times (4)^3$
or, $a_1=\dfrac{128}{64}=2$
Now, $a_n=a_1 \times r^{n-1}$
Hence, $a_n=2(4)^{n-1}$