Answer
See below
Work Step by Step
The co-vertex is with coordinates $(0,-\sqrt 11)=(0,\pm b) \rightarrow b=\pm \sqrt 11$
The focus is with coordinates $(−2,0)=(\pm c,0) \rightarrow c=\pm 2$
Finding b, we obtain: $c^2=a^2-b^2\\(\pm 2)^2=a^2-(\pm \sqrt 11)^2\\a^2=15$
The standard equation for an ellipse: $$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$
Substitute: $$\frac{x^2}{15}+\frac{y^2}{11}=1$$