Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 10 Counting Methods and Probability - 10.2 Use Combinations and the Binomial Theorem - 10.2 Exercises - Skill Practice - Page 694: 17

Answer

$2490624$

Work Step by Step

We know that if we want to select $r$ objects out of $n$ disregarding the order, we can do this in $_nC_r=\frac{n!}{r!(n-r)!}$ ways. We have $2$ possibilities; either we have no queen or we have $1$ queen. In the first case we have $n=48$ and $r=5$. Hence the answer: $_{48}C_5=\frac{48!}{43!5!}=1712304$ possibilities. In the second case we have $n_1=4,r_1=1$ for the queen and $n_2=48,r_2=4$ for the other $4$ cards, thus the number of possibilities: $_{4}C_1\cdot_{48}C_4=\frac{4!}{3!1!}\frac{48!}{44!4!}=4\cdot194580=778320$. Thus the total number of possibilities: $778320+1712304=2490624$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.