Algebra 1

Published by Prentice Hall
ISBN 10: 0133500403
ISBN 13: 978-0-13350-040-0

Chapter 9 - Quadratic Functions and Equations - 9-8 Systems of Linear and Quadratic Equations - Lesson Check - Page 585: 6

Answer

Answers may vary Two solutions: $y=2x^2+10x+9$ and $y=x$ ($x= -1.5, -3$) One solution: $y=x^2+2x+1$ and $y=x+.75$ ($x=-.5$) No solutions: $y=x^2+x+3$ and $y=x$

Work Step by Step

Two solutions: $y=2x^2+10x+9$ and $y=x$ $2x^2+10x+9=x$ $2x^2+10x-x+9=x-x$ $2x^2+9x+9=0$ $x=(-b±\sqrt {b^2-4ac})/2a$ $x=(-9±\sqrt {9^2-4*2*9})/2*2$ $x=(-9±\sqrt {81-72})/4$ $x=(-9±\sqrt {9})/4$ $x=(-9±3)/4$ $x=(-9+3)/4$ $x=-6/4 = -1.5$ $x=(-9-3)/4$ $x=-12/4 =-3$ One solution: $y=x^2+2x+1$ and $y=x+.75$ $x^2+2x+1=x+.75$ $x^2+2x+1-x-.75=x+.75-x-.75$ $x^2+x+.25=0$ $x=(-b±\sqrt {b^2-4ac})/2a$ $x=(-1±\sqrt {1^2-4*1*.25})/2*1$ $x=(-1±\sqrt {1-1})/2$ $x=(-1±\sqrt {0})/2$ $x=(-1±0)/2$ $x=-1/2$ No solutions: $y=x^2+x+3$ and $y=x$ $x^2+x+3=x$ $x^2+x+3-x=x-x$ $x^2+3 =0$ $x=(-b±\sqrt {b^2-4ac})/2a$ $x=(-0±\sqrt {0^2-4*1*3})/2*1$ $x=(±\sqrt {0-12})/2$ $x=(±\sqrt {-12})/2$ We can't have the square root of a negative number, so there are no solutions.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.