Answer
$(2^{5} + 2^{4}) + (2^{3} + (2^{2}) + (2^{1} + 2^{0})$ = (21)(3) = 63
Work Step by Step
$(2^{5} + 2^{4}) + (2^{3} + (2^{2}) + (2^{1} + 2^{0})$
We factor the GCF from the first two, middle two and the last three terms
$2^{4}(2^{1} + 2^{0}) + 2^{2}(2^{1} + 2^{0}) + 1(2^{1} + 2^{0})$
We factor out the common $(2^{1} + 2^{0})$ and we get
$(2^{4} + 2^{2} + 1)(2^{1} + 2^{0})$
We simplify the brackets
$2^{4}$ = 2*2*2*2 = 16
$2^{3}$ = 2*2*2 = 8
$2^{2}$ = 2*2 = 4
$2^{1}$ = 2
$2^{0}$ = 1
(16+4+1) (2+1)
(21)(3)
63