Answer
$(2^{5} + 2^{4} + 2^{3}) + (2^{2} + 2^{1} + 2^{0})$ = (9)(7) = 63
Work Step by Step
$(2^{5} + 2^{4} + 2^{3}) + (2^{2} + 2^{1} + 2^{0})$
We factor the GCF from the first three terms and the last three terms
$2^{3}(2^{2} + 2^{1} + 2^{0}) + 1(2^{2} + 2^{1} + 2^{0})$
We factor out the common $(2^{2} + 2^{1} + 2^{0})$ and we get
$(2^{3} + 1)(2^{2} + 2^{1} + 2^{0})$
We simplify the brackets
$2^{3}$ = 2*2*2 = 8
$2^{2}$ = 2*2 = 4
$2^{1}$ = 2
$2^{0}$ = 1
(8+1) (4+2+1)
(9)(7)
63