Algebra 1

Published by Prentice Hall
ISBN 10: 0133500403
ISBN 13: 978-0-13350-040-0

Chapter 11 - Rational Expressions and Functions - 11-3 Dividing Polynomials - Practice and Problem-Solving Exercises - Page 670: 50

Answer

a) $d-2+\frac{{3}}{{d+1}}$ b) $d^2-2d+3+\frac{{-4}}{{d+1}}$ c) $d^3-2d^2+3d-4+\frac{{5}}{{d+1}}$ d) $d^4-2d^3+3d^2-4d+5+\frac{{-6}}{{d+1}}$ e) $d^4-2d^3+3d^2-4d+5+\frac{{-6}}{{d+1}}$

Work Step by Step

Using the long division method shown below, then $$\begin{aligned} \text{a) }& (d^2-d+1)÷(d+1) \\&= d-2+\frac{\color{red}{3}}{\color{blue}{d+1}} , \\\\\text{b) }& (d^3-d^2+d-1)÷(d+1) \\&= d^2-2d+3+\frac{\color{red}{-4}}{\color{blue}{d+1}} , \\\\\text{c) }& (d^4-d^3+d^2-d+1)÷(d+1) \\&= d^3-2d^2+3d-4+\frac{\color{red}{5}}{\color{blue}{d+1}} .\end{aligned} $$ d) Based on the pattern above, then the result of $(d^5-d^4+d^3-d^2+d-1)÷(d+1)$ is $$ d^4-2d^3+3d^2-4d+5+\frac{\color{red}{-6}}{\color{blue}{d+1}} .$$ e) Using the long division method shown below, then $$\begin{aligned} & (d^5-d^4+d^3-d^2+d-1)÷(d+1) \\&= d^4-2d^3+3d^2-4d+5+\frac{\color{red}{-6}}{\color{blue}{d+1}} .\end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.