Algebra 1

Published by Prentice Hall
ISBN 10: 0133500403
ISBN 13: 978-0-13350-040-0

Chapter 11 - Rational Expressions and Functions - 11-3 Dividing Polynomials - Practice and Problem-Solving Exercises - Page 670: 37

Answer

$h=2x+2+\frac{\color{red}{0}}{\color{red}{}\color{blue}{x^2+x-3}}$

Work Step by Step

The formula for the area, $A$, of a trapezoid is given by $$\begin{aligned} A&=\frac{(b_1+b_2)h}{2} \\ \text{where:}& \\ b_1,b_2&=\text{ bases} \\ h&=\text{ height}\end{aligned} .$$ Using the formula for the area of a trapezoid, with $A=x^3+2x^2-2x-3$, $b_1=x$, and $b_2=x^2-3$, then $$\begin{aligned} A&=\frac{(b_1+b_2)h}{2} \\ x^3+2x^2-2x-3&=\frac{(x+x^2-3)h}{2} \\ \frac{2(x^3+2x^2-2x-3)}{x+x^2-3}&=h \\ h&=\frac{2x^3+4x^2-4x-6}{x^2+x-3} \end{aligned} .$$ Using the long division method shown below, then $$\begin{aligned} & (2x^3+4x^2-4x-6)\div(x^2+x-3) \\&= 2x+2+\frac{\color{red}{0}}{\color{red}{}\color{blue}{x^2+x-3}} .\end{aligned} $$ Hence, based on the required form, an expression for the height, $h$, is $$ h=2x+2+\frac{\color{red}{0}}{\color{red}{}\color{blue}{x^2+x-3}} .$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.