Answer
$x={\dfrac{10}{3}}$
$x={\dfrac{-15}{18}}$
Work Step by Step
$x=\dfrac{-b±{\sqrt {b^{2}-4ac}}}{2a}$ and $18x^{2}-45x-50=0$.Therefore, $a=18$,$b=-45$ and $c=-50$:
Substitute the values:
$x=\dfrac{45±{\sqrt {-45^{2}-4(18)(-50)}}}{2(18)}$
=$\dfrac{45±{\sqrt {2025-(-3600)}}}{36}$
=$\dfrac{45± {\sqrt {5625}}}{36}$
=$\dfrac{45±75}{36}$
Separate the equation into plus and minus equations:
$x=\dfrac{45+75}{36}={\dfrac{10}{3}}$
$x=\dfrac{45-75}{36}={\dfrac{-15}{18}}$