Algebra 1: Common Core (15th Edition)

Published by Prentice Hall
ISBN 10: 0133281140
ISBN 13: 978-0-13328-114-9

Chapter 8 - Polynomials and Factoring - 8-5 Factoring x2+bx+c - Practice and Problem-Solving Exercises - Page 515: 13

Answer

$v^2+12v+20=(v+10)(v+2)$

Work Step by Step

We are trying to fill in the blank in the equation $v^2+12v+20=(v+10)(v+\square).$ In order to do so, we will factor the trinomial on the left side of the equation, to determine the second factor. To factor a trinomial in the form $x^2+bx+c$, we must find two numbers whose product is $c$ and whose sum is $b$. We then insert these two numbers into the blanks of the factors $(x+\_)(x+\_)$. In the case of $v^2+12v+20$, we are looking for two numbers whose product is $20$ and whose sum is $12$. The numbers $10$ and $2$ meet these criteria, because $$10\times(2)=20\;\text{and}\;10+(2)=12$$When we insert these numbers into the blanks, we arrive at the factors $(v+10)(v+2)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.