Answer
$4\sqrt[3]{9c^{2}}$
Work Step by Step
Apply $\ \ \sqrt[n]{a^{m}}=a^{m/n},$
$(24c)^{2/3}= \sqrt[3]{(24c)^{2}} \qquad$ ... power of a product...
$=\sqrt[3]{(24)^{2}(c)^{2}}$
$=\sqrt[3]{(2^{3}\cdot 3)^{2}c^{2}}$
$=\sqrt[3]{(2^{3})^{2}\cdot(3)^{2}c^{2}}$
$=\sqrt[3]{(2^{2})^{3}\cdot(3)^{2}c^{2}}$
$=2^{2}\cdot\sqrt[3]{3^{2}c^{2}}$
= $4\sqrt[3]{9c^{2}}$