Answer
The answer is 196$\times$$d^{\frac{7}{3}}$$\times$$g^{\frac{7}{3}}$
Work Step by Step
To solve this
(7$d^{\frac{3}{2}}$$\times$2$g^{\frac{5}{6}}$)($2g^{\frac{3}{2}}$$\times$7$d^{\frac{5}{6}}$) = (7$\times$7)($d^{\frac{3}{2}+\frac{5}{6}}$)(2$\times$2)($g^{\frac{5}{6}+\frac{3}{2}}$)
= (49$d^{\frac{9}{6}+\frac{5}{6}}$) (4$t^{\frac{5}{6}+\frac{9}{6}}$)
= 196$\times$$d^{\frac{14}{6}}$$\times$$g^{\frac{14}{6}}$
= 196$\times$$d^{\frac{7}{3}}$$\times$$g^{\frac{7}{3}}$