Algebra 1: Common Core (15th Edition)

Published by Prentice Hall
ISBN 10: 0133281140
ISBN 13: 978-0-13328-114-9

Chapter 12 - Data Analysis and Probability - 12-6 Permutations and Combinations - Practice and Problem-Solving Exercises - Page 768: 65

Answer

300

Work Step by Step

A)Find $_{6}$C$_{4}$: $_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$ $_{6}$C$_{4}$=$\frac{6!}{4!(6-4)!}$ -simplify like terms- $_{6}$C$_{4}$=$\frac{6!}{4! (2!)}$ -write using factorial- $_{6}$C$_{4}$=$\frac{6*5*4*3*2*1}{(4*3*2*1)(2*1)}$ -simplify- $_{6}$C$_{4}$=15 B)There are 3 more questions to be answered and 6 questions left. C)Find $_{6}$C$_{3}$ from information from B. $_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$ $_{6}$C$_{3}$=$\frac{6!}{3!(6-3)!}$ -simplify like terms- $_{6}$C$_{3}$=$\frac{6!}{3! (3!)}$ -write using factorial- $_{6}$C$_{3}$=$\frac{6*5*4*3*2*1}{(3*2*1)(3*2*1)}$ -simplify- $_{6}$C$_{3}$=20 D.Multiply the results from A and C using the multiplication counting principle: 15$\times$20=300 The answer is 300.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.