Answer
1
Work Step by Step
Use the formula of combination: $_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$. Plug in 90 for N and 90 for R:
$_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$
$_{90}$C$_{90}$=$\frac{90!}{90!(90-90)!}$ -simplify like terms-
$_{90}$C$_{90}$=$\frac{90!}{90! (0!)}$ -write using factorial-
$_{90}$C$_{90}$=$\frac{90*89*88*87*..........3*2*1}{(90*89*88*87*...2*1)(1)}$ -simplify-
$_{90}$C$_{90}$=1