Algebra 1: Common Core (15th Edition)

Published by Prentice Hall
ISBN 10: 0133281140
ISBN 13: 978-0-13328-114-9

Chapter 11 - Rational Expressions and Functions - Chapter Review - Page 716: 16

Answer

$ 2b^2 +b+3$.

Work Step by Step

The given values are Width $w=(2b-1)$. Area $A=(4b^3+5b-3) \; in.^2$ Formula for area is $l\times w=A$. Therefore, $(4b^3+5b-3)=l(2b-1)$. Divide both sides by $(2b-1)$. Therefore, $\frac{(4b^3+5b-3)}{(2b-1)}=l$. Rewrite the expression in standard form. $(4b^3+0b^2+5b-3)\div(2b-1)$ $\begin{matrix} & 2b^2 & +b &+3 ​& & \leftarrow &Quotient\\ &-- &-- &--&--& \\ 2b-1) &4b^3&+0b^2&+5b&-3 & \\ ​& 4b^3 & -2b^2 & & & \leftarrow &2b^2(2b-1) \\ & -- & -- & & & \leftarrow &subtract \\ & 0 & 2b^2 & +5b & & \\ & & 2b^2 & -b & & \leftarrow & b(2b-1) \\ & & -- & -- & & \leftarrow & subtract \\ & & 0&6b &-3 & \\ ​& & & 6b& -3 & \leftarrow & 3(2b-1) \\ & & & -- & -- & \leftarrow & subtract \\ & & & 0 & 0 & \leftarrow & Remainder ​\end{matrix}$ The answer is $\Rightarrow Quotient + \frac{Remainder}{Divisor}$ $\Rightarrow 2b^2 +b+3+\frac{0}{2b-1}$ Simplify. $\Rightarrow 2b^2 +b+3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.