Answer
$x^{4}$ - $x^3$ + $x^2$
Work Step by Step
Given : ($x^{6}$ - $x^5$ + $x^4$) $\div$ $x^2$
($x^{6}$ - $x^5$ + $x^4$) $\div$ $x^2$ = $\frac{x^{6}}{x^2} - \frac{x^5}{x^2} + \frac{x^4}{x^2}$
(Use the distributive property.)
= $x^{6-2} - x^{5-2} + x^{4-2}$
(Use the second law of indices with the same base: $a^m \div a^n = a^{m-n}$)
= $x^{4}$ - $x^3$ + $x^2$