Algebra 1: Common Core (15th Edition)

Published by Prentice Hall
ISBN 10: 0133281140
ISBN 13: 978-0-13328-114-9

Chapter 10 - Radical Expressions and Equations - 10-4 Solving Radical Equations - Lesson Check - Page 636: 5

Answer

$s=-1$.

Work Step by Step

The given expression is $\Rightarrow s=\sqrt{s+2}$ Square both sides. $\Rightarrow s^2=(\sqrt{s+2})^2$ Simplify. $\Rightarrow s^2=s+2$ Move all terms to the left hand side. $\Rightarrow s^2-s-2=0$ Write the middle term $-s$ as $-2s+s$. $\Rightarrow s^2-2s+s-2=0$ Factor out common terms. $\Rightarrow s(s-2)+1(s-2)=0$ Factor out $(s-2)$. $\Rightarrow (s-2)(s+1)=0$ Use zero product property. $s-2=0$ or $s+1=0$ Solve for $s$. $s=2$ or $s=-1$ Check $s=2$. $\Rightarrow 2=\sqrt{2+2}$ $\Rightarrow 2=\sqrt{4}$ $\Rightarrow 2=2$ Check $s=-1$. $\Rightarrow -1=\sqrt{-1+2}$ $\Rightarrow -1=\sqrt{1}$ $\Rightarrow -1=1$ which is not true. Hence, the extraneous solution is $s=-1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.