Answer
$16y^3$
Work Step by Step
Simpifying $\sqrt 2y \times \sqrt 128y^5$
$ \sqrt 2 \times \sqrt 128 \times\sqrt y \times \sqrt y^5$
= $\sqrt 256y^6$
Finding the perfect square factor of $ 256y^6$
$256y^6 = 4 \times 64 \times y^6$
= $2^2 \times8^2 \times y^6$
= $(2 \times8 \times y^3)^2$
= $(16y^3)^2$
$\sqrt 256y^6 = \sqrt (16y^3)^2$
=$\sqrt16y^3$