Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 8 - Section 8.5 - Inclusion-Exclusion - Exercises - Page 557: 5

Answer

a. 300 b. 150 c. 175 d. 100

Work Step by Step

$|A_1|=100$, $|A_2|=100$, $|A_3|=100$ a. We use the Principle of Inclusion-Exclusion for three sets, $|A_1 \cup A_2 \cup A_3|=|A_1|+|A_2|+|A_3|-|A_1\cap A_2|-|A_1\cap A_3|-|A_2\cap A_3|+|A_1\cap A_2\cap A_3|$. The sets are disjoint means $|A_1\cap A_2|$, $|A_1\cap A_3|$, $|A_2\cap A_3|$, $|A_1\cap A_2\cap A_3|$ are all 0. Then $|A_1 \cup A_2 \cup A_3|=|A_1|+|A_2|+|A_3|-|A_1\cap A_2|-|A_1\cap A_3|-|A_2\cap A_3|+|A_1\cap A_2\cap A_3|=100+100+100-0-0-0+0=300$. b. $|A_1\cap A_2|=50$, $|A_1\cap A_3|=50$, $|A_2\cap A_3|=50$, $|A_1\cap A_2\cap A_3|=0$. Then $|A_1 \cup A_2 \cup A_3|=|A_1|+|A_2|+|A_3|-|A_1\cap A_2|-|A_1\cap A_3|-|A_2\cap A_3|+|A_1\cap A_2\cap A_3|=100+100+100-50-50-50+0=150$. c. $|A_1\cap A_2|=50$, $|A_1\cap A_3|=50$, $|A_2\cap A_3|=50$, $|A_1\cap A_2\cap A_3|=25$. Then $|A_1 \cup A_2 \cup A_3|=|A_1|+|A_2|+|A_3|-|A_1\cap A_2|-|A_1\cap A_3|-|A_2\cap A_3|+|A_1\cap A_2\cap A_3|=100+100+100-50-50-50+25=175$. d. The sets are equal. This means that $|A_1\cap A_2|$, $|A_1\cap A_3|$, $|A_2\cap A_3|$, and $|A_1\cap A_2\cap A_3|$ are all equal to $100$. Then $|A_1 \cup A_2 \cup A_3|=|A_1|+|A_2|+|A_3|-|A_1\cap A_2|-|A_1\cap A_3|-|A_2\cap A_3|+|A_1\cap A_2\cap A_3|=100+100+100-100-100-100+100=100$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.