Discrete Mathematics and Its Applications, Seventh Edition

Published by McGraw-Hill Education
ISBN 10: 0073383090
ISBN 13: 978-0-07338-309-5

Chapter 8 - Section 8.5 - Inclusion-Exclusion - Exercises - Page 557: 1

Answer

a. 30 b. 29 c. 24 d. 18

Work Step by Step

$|A\cup B|=|A|+|B|-|A\cap B|$, $|A|=12$, $|B|=18$ a. If $A\cap B=\emptyset$, then $|A\cup B|=0$. Using the Principle of Inclusion-Exclusion, $|A\cup B|=|A|+|B|-|A\cap B|=12+18-0=30$. b. $|A\cap B|=1$: Using the Principle of Inclusion-Exclusion, $|A\cup B|=|A|+|B|-|A\cap B|=12+18-1=29$. c. $|A\cap B|=6$: Using the Principle of Inclusion-Exclusion, $|A\cup B|=|A|+|B|-|A\cap B|=12+18-6=24$. d. $A \subseteq B$ means that every element of $A$ is also an element of $B$, so $|A\cap B|=|A|=12$. Using the Principle of Inclusion-Exclusion, $|A\cup B|=|A|+|B|-|A\cap B|=12+18-12=18$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.