Shigley's Mechanical Engineering Design 10th Edition

Published by McGraw-Hill Education
ISBN 10: 0073398209
ISBN 13: 978-0-07339-820-4

Chapter 2 - Problems - Page 79: 2-3

Answer

For AISI 1018 CD steel, specific strength = 47.42 kN-m/kg For 2011-T6 aluminum, specific strength = 62.3 kN-m/kg For Ti-6 Al-4 V titanium, specific strength = 187 kN-m/kg For ASTM No. 40 cast iron, specific strength = 40.7 kN-m/kg

Work Step by Step

a) for AISI 1018 CD steel, from table A-20, S_{y} = 370 MPa = 370 * 1000 kPa from table A-5, unit weight w of carbon steel = 76.5 kN/cubic-metre Dividing by gravitational acceleration g = 9.81 $\frac{m}{s^{2}}$, we get density p = 76.5/9.81 k-kg/$m^{3}$ Multiply by 1000, we get p = 76.5*102 kg/$m^{3}$ $\frac{Sy}{p}$ = $\frac{370*1000}{76.5*102}$ = 47.42 kN-m/kg b) for 2011-T6 aluminum, from table A-22, S_{y} = 169 MPa = 169 * 1000 kPa from table A-5, unit weight w = 26.6 kN/cubic-metre we get density p = 26.6*102 kg/$m^{3}$ $\frac{Sy}{p}$ = $\frac{169*1000}{26.6*102}$ = 62.3 kN-m/kg c) for Ti-6Al-4V titanium, from table A-24c, S_{y} = 830 MPa = 830 * 1000 kPa from table A-5, unit weight w of titanium = 43.4 kN/cubic-metre we get density p = 43.4*102 kg/$m^{3}$ $\frac{Sy}{p}$ = $\frac{830*1000}{43.4*102}$ = 187 kN-m/kg d) for ASTM No. 40 cast iron, For this material, we do not have yield strength, hence we use ultimate tensile strength Sut from table A-24 a, S_{ut} = 42.5 kpsi = 42.5*6.89 MPa = 292.8 MPa = 292.8 * 1000 kPa from table A-5, unit weight w = 70.6 kN/cubic-metre we get density p = 70.6*102 kg/$m^{3}$ $\frac{S_{ut}}{p}$ = $\frac{292.8*1000}{70.6*102}$ = 40.7 kN-m/kg
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.