Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 22 - Vibrations - Section 22.1 - Undamped Free Vibration - Problems - Page 652: 8

Answer

$y=(17.27sin(13.9t)-2cos(13.9t))in$ $C=17.4in$

Work Step by Step

To determine the equation of motion: $y=\frac{v_{o}}{ω_{n}}sin(ω_{n}t)+y_{o}cos(ω_{n}t)...eq(1)$ The natural frequency can be calculated by: $ω_{n}=\sqrt \frac{K}{m}$ $ω_{n}=\sqrt \frac{3lb/in\times12in/ft}{6/32.2}=13.9 rad/s$ By substituting $ω_{n}$ in $eq(1)$ we obtain the equation describes the motion $eq(2)$: $y=\frac{20ft/s\times12in/ft}{13.9rad/s}sin(13.9t)+(-2in)cos(13.9t)$ $y=(17.27sin(13.9t)-2cos(13.9t))in...eq(2)$ To determine the maximum displacement $C$: $C=\sqrt {\frac {v_{o}}{ω_{n}}^{2}+y_{o}^{2}}$ $C=\sqrt {(\frac {20ft/s\times12in/ft}{13.9rad/s})^{2}+(-2in)^{2}}$ $C=17.4in$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.