Engineering Mechanics: Statics & Dynamics (14th Edition)

Published by Pearson
ISBN 10: 0133915425
ISBN 13: 978-0-13391-542-6

Chapter 22 - Vibrations - Section 22.1 - Undamped Free Vibration - Problems - Page 652: 10

Answer

Natural period ($\tau$) is $2\pi/\sqrt {(\frac{3k}{m}+\frac{3g}{2L})}$

Work Step by Step

By summing the moments about point $A$: $\circlearrowleft +\Sigma M_{A}=I_{A}\ddot \theta$, where $\theta$ is the rotation angle of the rod around $A$ Because the rod is uniform $I_{A}=\frac{mL^{2}}{3}$ $\circlearrowleft +\Sigma M_{A}=-(kLsin\theta)\times L-(mgsin\theta)\times \frac{L}{2}=\frac{mL^{2}}{3}\ddot \theta...eq(1)$ Since the sideward displacement is small $sin\theta=\theta$ Rewriting $eq(1)$: $\ddot \theta+(\frac{3k}{m}+\frac{3g}{2L})\theta=0$ $\Rightarrow$ $\ddot \theta+\omega_{n}^{2}\theta=0$ $\Rightarrow$ $\omega_{n}=\sqrt {(\frac{3k}{m}+\frac{3g}{2L})}$ To determine the natural period $(\tau)$: $\tau=\frac{2\pi}{\omega_{n}}$ $\tau=2\pi/\sqrt {(\frac{3k}{m}+\frac{3g}{2L})}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.