University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 9 - Rotation of Rigid Bodies - Problems - Exercises - Page 300: 9.80

Answer

The speed of the box is $$v_{\text{box}}=4.76 \text{ m/s}$$

Work Step by Step

From the law of conservation of energy it follows that Loss of $U$ of box equals gain in $K$ of system. Both the cylinder and pulley have kinetic energy of the form $K=\dfrac{1}{2}I\omega^2$. So we can write down: $m_{\text{box}}gh=\dfrac{1}{2}m_{\text{box}}v^2_{\text{box}}+\dfrac{1}{2}I_{\text{pulley}}\omega^2_{\text{pulley}}+\dfrac{1}{2}I_{\text{cylinder}}\omega^2_{\text{cylinder}}$ and $\omega_{\text{pulley}}=\dfrac{v_{\text{box}}}{r_{\text{pulley}}},$ $\omega_{\text{cylinder}}=\dfrac{v_{\text{box}}}{r_{\text{cylinder}}}.$ So we have $m_{\text{box}}gh=\dfrac{1}{2}m_{\text{box}}v^2_{\text{box}}+\dfrac{1}{2}\left(\dfrac{1}{2}m_{\text{pulley}}r^2_{\text{pulley}}\right)\left(\dfrac{v_{\text{box}}}{r_{\text{pulley}}}\right)^2+\dfrac{1}{2}\left(\dfrac{1}{2}m_{\text{cylinder}}r^2_{\text{cylinder}}\right)\left(\dfrac{v_{\text{box}}}{r_{\text{cylinder}}}\right)^2$ and $v_{\text{box}}=\left(\dfrac{m_{\text{box}}gh}{\frac{1}{2}m_{\text{box}}+\frac{1}{4}m_{\text{pulley}}+\frac{1}{4}m_{\text{cylinder}}}\right)^{1/2}$ $v_{\text{box}}=\left(\dfrac{3\cdot9.8\cdot2.5}{1.50+\frac{1}{4}\cdot7.0}\right)=4.76 \text{ m/s}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.