Answer
(a) $J = 24750~kg~m/s$
(b) $v = 17.7~m/s$
(c) $t = 4.76~s$
(d) $W = -218700~J$
(e) $d = 42.1~m$
Work Step by Step
(a) $J = \sum F~t$
$J = (7500~N)(1.50~s)+(5500~N)(1.50~s)+(3500~N)(1.50~s)$
$J = 24750~kg~m/s$
(b) We can find the mass of the car in kg.
$mass = (3071~lb)(\frac{1~kg}{2.2~lb})$
$mass = 1396~kg$
We can find the speed of the car.
$m~v = J$
$v = \frac{J}{m} = \frac{24750~kg~m/s}{1396~kg}$
$v = 17.7~m/s$
(c) $J = \Delta p$
$F~t = \Delta p$
$t = \frac{-24750~kg~m/s}{-5200~N}$
$t = 4.76~s$
(d) $W = \Delta K$
$W = 0-\frac{1}{2}mv^2$
$W = 0-\frac{1}{2}(1396~kg)(17.7~m/s)^2$
$W = -218700~J$
(e) $F~d = W$
$d = \frac{W}{F} = \frac{-218700~J}{-5200~N}$
$d = 42.1~m$