University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 4 - Newton's Laws of Motion - Problems - Exercises - Page 128: 4.56

Answer

$r(t) = (\frac{k_1}{2m}~t^2+\frac{k_2~k_3}{120m^2}~t^5)~\hat{i} + (\frac{k_3}{6m}~t^3)~\hat{j}$ $v(t) = (\frac{k_1}{m}~t+\frac{k_2~k_3}{24m^2}~t^4)~\hat{i} + (\frac{k_3}{2m}~t^2)~\hat{j}$

Work Step by Step

$F_y(t) = k_3~t$ $a_y(t) = \frac{F_y(t)}{m} = \frac{k_3}{m}~t$ $v_y(t) = \frac{k_3}{2m}~t^2$ $y(t) = \frac{k_3}{6m}~t^3$ $F_x(t) = k_1+k_2~y$ $F_x(t) = k_1+k_2(\frac{k_3}{6m}~t^3)$ $a_x(t) = \frac{F_x(t)}{m} = \frac{k_1}{m}+\frac{k_2~k_3}{6m^2}~t^3$ $v_x(t) = \frac{k_1}{m}~t+\frac{k_2~k_3}{24m^2}~t^4$ $x(t) = \frac{k_1}{2m}~t^2+\frac{k_2~k_3}{120m^2}~t^5$ $r(t) = (\frac{k_1}{2m}~t^2+\frac{k_2~k_3}{120m^2}~t^5)~\hat{i} + (\frac{k_3}{6m}~t^3)~\hat{j}$ $v(t) = (\frac{k_1}{m}~t+\frac{k_2~k_3}{24m^2}~t^4)~\hat{i} + (\frac{k_3}{2m}~t^2)~\hat{j}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.