University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 3 - Motion in Two or Three Dimensions - Problems - Exercises - Page 97: 3.56

Answer

Speed range is, $3\sqrt{gD}\leq v_0 \leq 3.13\sqrt{gD}$

Work Step by Step

Using equation of trajectory, $y=xtan\theta-\frac{gx^2}{2u^2cos^2\theta}$ For minimum possible speed, at $x=6D \Rightarrow y=2D$ So, $2D=6Dtan45^0-\frac{g(6D)^2}{2v_0^2cos^245^0} \Rightarrow 4D= \frac{36gD^2}{v_0^2} \Rightarrow v_{0,min}=3\sqrt{gD}$ Similarly, for maximum possible speed, at $x=7D \Rightarrow y=2D$ So, $2D=7Dtan45^0-\frac{g(7D)^2}{2v_0^2cos^245^0} \Rightarrow 5D= \frac{49gD^2}{v_0^2} \Rightarrow v_{0,max}=7\sqrt{\frac{gD}{5}}\approx3.13\sqrt{gD}$ So, speed range is, $3\sqrt{gD}\leq v_0 \leq 3.13\sqrt{gD}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.