University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 2 - Motion Along a Straight Line - Problems - Exercises - Page 63: 2.69

Answer

(a) When $v_{0x} = -4.00~m/s$, the particle has the same x-coordinate at t = 0 and t = 4.00 s. (b) When t = 4.00 s, the velocity will be 12.0 m/s

Work Step by Step

$a_x(t) = -2.00~m/s^2 + (3.00~m/s^3)~t$ (a) We can use $a_x(t)$ to find $v_x(t)$. $v_x(t) = v_{0x}+ \int_{0}^{t}a_x(t)~dt$ $v_x(t) = v_{0x}+ \int_{0}^{t}-2.00~m/s^2 + (3.00~m/s^3)~t~dt$ $v_x(t) = v_{0x}+ (-2.00~m/s^2)~t + (1.50~m/s^3)~t^2$ We can use $v_x(t)$ to find $x(t)$. $x(t) = x_0+ \int_{0}^{t}v_x(t)~dt$ $x(t) = x_0+ \int_{0}^{t}v_{0x}+ (-2.00~m/s^2)~t + (1.50~m/s^3)~t^2~dt$ $x(t) = x_0 + v_{0x}~t+ (-1.00~m/s^2)~t^2 + (0.50~m/s^3)~t^3$ When t = 0, $x = x_0 + v_{0x}(0)+ (-1.00~m/s^2)(0)^2 + (0.50~m/s^3)(0)^3$ $x = x_0$ When t = 4.00 s, $x = x_0 + v_{0x}(4.00~s)+ (-1.00~m/s^2)(4.00~s)^2 + (0.50~m/s^3)(4.00~s)^3$ $x = x_0 + v_{0x}(4.00~s) -16.0~m+32.0~m$ We need these two x-coordinates to be equal. $x_0 + v_{0x}(4.00~s) -16.0~m+32.0~m = x_0$ $v_{0x} = \frac{-16.0~m}{4.00~s} = -4.00~m/s$ When $v_{0x} = -4.00~m/s$, the particle has the same x-coordinate at t = 0 and t = 4.00 s. (b) When t = 4.00 s, $v = (-4.00~m/s)+ (-2.00~m/s^2)(4.00~s) + (1.50~m/s^3)(4.00~s)^2$ $v = 12.0~m/s$ When t = 4.00 s, the velocity will be 12.0 m/s
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.