Answer
$F=2.11\times 10^8N$
Work Step by Step
We can find the total force as follows:
$F=2\pi R\int^{h}_{0}F_{\circ}ydy$......eq(1)
As $F_{\circ} y=\rho gy$
Thus, eq(1) becomes
$F=2\pi R\rho g\int^{h}_{0} ydy$
$\implies F=2\pi R\rho g\frac{h^2}{2}$
$\implies F=2\pi D \rho gh^2$ ($D=\frac{R}{2}$)
This simplifies to:
$F=\frac{\pi}{2}D\rho gh^2$
We plug in the known values to obtain:
$F=\frac{\pi}{2}(27.4)(1600)(9.80)(17.7)^2$
This simplifies to:
$F=2.11\times 10^8N$