Answer
$v=28.38~m/s$
Work Step by Step
Using Bernoulli's equation, we can find the velocity of the water escaping through the small hole at the bottom of the tank:
$P_1+\rho g y_1+{1 \over 2}\rho v_1^2=P_2+\rho g y_2+{1 \over 2}\rho v_2^2$
$y_1=11~m$
$y_2=0$
$\rho=1030~kg/m^3$
$v_1=0$
$P_1=3(1.013\times 10^5~Pa)=3.039\times 10^5~Pa$
$P_2=0$
$(3.039\times 10^5~Pa)+(1030~kg/m^3)(9.8~m/s^2)(11~m)={1 \over 2}(1030~kg/m^3)v_2^2$
$v_2=28.38~m/s$