Answer
In the order of increasing density, the samples are $D,F,B,C,A,E$.
Work Step by Step
We express all the values in the same unit.
$Density(d)=\frac{Mass(m)}{Volume(v)}$
Sample A: $d=\frac{m}{v}=\frac{\frac{8.00}{1000}}{1.67\times10^{-6}}\frac{kg}{m^{3}}=4.79\times10^{3}\frac{kg}{m^{3}}$
Sample B: $d=\frac{m}{v}=\frac{\frac{6.00\times10^{-6}}{1000}}{9.38\times10^{6}\times10^{-18}}\frac{kg}{m^{3}}=6.40\times10^{2}\frac{kg}{m^{3}}$
Sample C: $d=\frac{m}{v}=\frac{\frac{8.00\times10^{-3}}{1000}}{2.50\times10^{-3}\times10^{-6}}\frac{kg}{m^{3}}=3.20\times10^{3}\frac{kg}{m^{3}}$
Sample D: $d=\frac{m}{v}=\frac{9.00\times10^{-4}}{2.81\times10^{3}\times10^{-9}}\frac{kg}{m^{3}}=3.20\times10^{2}\frac{kg}{m^{3}}$
Sample E: $d=\frac{m}{v}=\frac{\frac{9.00\times10^{4}\times10^{-9}}{1000}}{1.41\times10^{-2}\times10^{-9}}\frac{kg}{m^{3}}=6.38\times10^{3}\frac{kg}{m^{3}}$
Sample F: $d=\frac{m}{v}=\frac{\frac{6.00\times10^{-2}\times10^{-3}}{1000}}{1.25\times10^{8}\times10^{-18}}\frac{kg}{m^{3}}=4.80\times10^{2}\frac{kg}{m^{3}}$
In the order of increasing density, the samples are $D,F,B,C,A,E$.