Answer
$\frac{H}{R}=\frac{1}{4}tan\theta$
Work Step by Step
We know that
$H=\frac{v_{\circ}sin^2\theta}{2g}$
and $R=\frac{g}{v_{\circ}^2sin2\theta}$
Now $\frac{H}{R}=(\frac{v_{\circ}sin^2\theta}{2g})(\frac{g}{v_{\circ}^2sin2\theta})$
$\frac{H}{R}=\frac{sin^2\theta}{2sin2\theta}$
$\frac{H}{R}=\frac{sin^2\theta}{4sin\theta cos\theta}$
$\frac{H}{R}=\frac{sin\theta}{4cos\theta}$
$\frac{H}{R}=\frac{1}{4}tan\theta$