Physics Technology Update (4th Edition)

Published by Pearson
ISBN 10: 0-32190-308-0
ISBN 13: 978-0-32190-308-2

Chapter 2 - One-Dimensional Kinematics - Problems and Conceptual Exercises - Page 54: 88

Answer

(a) $24.8~m/s$ (b) $0.702~s$

Work Step by Step

Let the positive direction be upward. (a) $t=2.00~s$, $\Delta x=x-x_0=30.0~m$, $a=-g=-9.81~m/s^2$ $x=x_0+v_0t+\frac{1}{2}at^2$ $x-x_0=v_0t+\frac{1}{2}at^2$ $30.0~m=v_0(2.00~s)+\frac{1}{2}(-9.81~m/s^2)(2.00~s)^2$ $30.0~m=v_0(2.00~s)-(19.62~m)$ $v_0=\frac{30.0~m+19.62~m}{2.00~s}=24.8~m/s$ (b) $v_0=24.8~m/s$, $\Delta x=x-x_0=15.0~m$, $a=-g=-9.81~m/s^2$ $x-x_0=v_0t+\frac{1}{2}at^2$ $15.0~m=(24.8~m/s)t+\frac{1}{2}(-9.81~m/s^2)t^2$ $(4.905~m/s^2)t^2-(24.8~m/s)t+15.0~m=0$ This is a quadratic equation for $t$. $t=\frac{-(-24.8~m/s)±\sqrt {(-24.8~m/s)^2-4(4.905~m/s^2)(15.0~m)}}{2(4.905~m/s^2)}$ $t_1=4.35~s$ $t_2=0.702~s$ The arrow is launched upward. It goes up until it reaches the top then moves back (downward). So, it first reaches a height of $15.0 m$ at $t_2=0.702~s$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.