Answer
(a) $2.3~g=2.3\times10^{-3}~kg$
(b) $4.7\times10^{3}~min$
Work Step by Step
(a) $1~day=24~h$ and $1~h=60~min$. So, $1~day=24\times60min=1440~min$
$growth~rate=1.6~mg/min$ and $1~mg=10^{-3}~g=10^{-6}~kg$
$mass~increase=(growth~rate)(time)=(1.6~mg/min)(1440~min)=2.3\times10^{3}~mg=2.3~g=2.3\times10^{-3}~kg$
(b) $0.0075~kg=7500~mg$
Rearrange the equation above:
$time=\frac{mass~increase}{growth~rate}=\frac{7500~mg}{1.6~mg/min}=4.7\times10^{3}~min$