Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)

Published by Pearson
ISBN 10: 0133942651
ISBN 13: 978-0-13394-265-1

Chapter 22 - Electric Charges and Forces - Exercises and Problems - Page 628: 73

Answer

$q = 7.46\times 10^{-7}~C$

Work Step by Step

The vertical component of the tension in each thread is equal in magnitude to the weight of one sphere: $F_T~cos~\theta = mg$ $F_T = \frac{mg}{cos~\theta}$ We can find the charge $q$: $\frac{kq^2}{r^2} = F_T~sin~\theta$ $\frac{kq^2}{(2~L~sin~\theta)^2} = (\frac{mg}{cos~\theta})~(sin~\theta)$ $q^2 = \frac{4L^2~mg~tan~\theta~sin^2~\theta}{k}$ $q = 2L~sin~\theta~\sqrt{\frac{mg~tan~\theta}{k}}$ $q = (2)(1.0~m)~sin~20^{\circ}~\sqrt{\frac{(0.0030~kg)(9.8~m/s^2)~tan~20^{\circ}}{9.0\times 10^9~N~m^2/C^2}}$ $q = 7.46\times 10^{-7}~C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.