Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 9 - Rotational Dynamics - Check Your Understanding - Page 239: 16

Answer

The order in which the objects reach the bottom is: solid sphere, solid cylinder, spherical shell, hoop.

Work Step by Step

The total mechanical energy $E_0$ at the top of the incline ($\omega_0=0$ and $v_0=0$) is the same as the total mechanical energy $E_f$ at the bottom of the incline ($h_f=0$). Therefore, $$mgh_0=\frac{1}{2}mv_f^2+\frac{1}{2}I\omega_f^2$$ The forumla for an object's moment of inertia has the form of $I=\frac{a}{b}mr^2$. Also, $\omega_f=\frac{v_f}{r}$. Therefore, $$mgh_0=\frac{1}{2}mv_f^2+\frac{1}{2}\Big(\frac{a}{b}mr^2\frac{v_f^2}{r^2}\Big)$$ $$mgh_0=\frac{1}{2}mv_f^2+\frac{a}{2b}mv_f^2=\frac{a+b}{2b}mv_f^2$$ $$gh_0=\frac{a+b}{2b}v_f^2$$ $$v_f=\sqrt{\frac{2b}{a+b}gh_0}$$ - A hoop: $I=MR^2$, so $a=b=1$. Therefore, $$v_f=\sqrt{\frac{2}{2}gh_0}=\sqrt{gh_0}$$ - A solid cylinder: $I=1/2MR^2$, so $a=1$ and $b=2$. Therefore, $$v_f=\sqrt{\frac{4}{3}gh_0}=\sqrt{1.33gh_0}$$ - A spherical shell: $I=2/3MR^2$, so $a=2$ and $b=3$. Therefore, $$v_f=\sqrt{\frac{6}{5}gh_0}=\sqrt{1.2gh_0}$$ - A solid sphere: $I=2/5MR^2$, so $a=2$ and $b=5$. Therefore, $$v_f=\sqrt{\frac{10}{7}gh_0}=\sqrt{1.43gh_0}$$ The faster the object goes, the less time it takes for the object to reach the bottom. So the order in which they reach the bottom is: solid sphere, solid cylinder, spherical shell, hoop.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.