Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 6 - Work and Energy - Problems - Page 168: 44

Answer

The maximum height the ball would reach is $41.5m$

Work Step by Step

1) Find the release velocity. The ball is whirled at a rate of 3 revolutions per second, so its period is $T=1/3s$. The radius of the whirling circle is $r=1.5m$ $$v=\frac{2\pi r}{T}=28.27m/s$$ The speed in a uniform circular motion is constant, and so is the release velocity. This means the release velocity is $28.27m/s$ 2) After the ball is released, it travels straight upward, so its KE decreases while its PE increases by the same amount, following the principle of energy conservation. Therefore, $$\Delta PE = -\Delta KE$$ $$mg\Delta h=-\frac{1}{2}m\Delta v^2$$ $$g\Delta h=-\frac{1}{2}(v_f^2-v_0^2) (1)$$ $g=9.8m/s^2$, the initial release speed $v_0=28.27m/s$, and the maximum height is when $v_f=0$ . Using these, we can find the change in height: $$9.8\Delta h=399.6$$ $$\Delta h=40.78m$$ The maximum height the ball would reach is $0.75+40.78=41.53m$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.