Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 10 - Simple Harmonic Motion and Elasticity - Check Your Understanding - Page 263: 9

Answer

(b) $\gt$ (c) $\gt$ (a) Or $A_b \gt A_c \gt A_a$

Work Step by Step

We have $\frac{1}{2}kA² = \frac{1}{2}kx²+ \frac{1}{2}mv² $ Let $x_0$ be the streched length then for (a) $\frac{1}{2}kA² = \frac{1}{2}k{x_0}²$ $A_a= x_0 $ (b) $\frac{1}{2}kA² = \frac{1}{2}kx²+ \frac{1}{2}mv² $ $\frac{1}{2}kA² = \frac{1}{2}kx_0²+ \frac{1}{2}mv_0² $ $A_b = \sqrt{x_0² + (m/k )v_0²}$ (c) $\frac{1}{2}kA² = \frac{1}{2}kx²+ \frac{1}{2}mv² $ $\frac{1}{2}kA² = \frac{1}{2}kx_0²+ \frac{1}{2}m(\frac{1}{2}v_0² )$ $A_c = \sqrt{x_0² + (m/2k)v_0²}$ From the amplitudes we saw $A_b \gt A_c \gt A_a$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.