Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 10 - Simple Harmonic Motion and Elasticity - Check Your Understanding - Page 259: 5

Answer

$\text{ Particle 2 will have the greatest maximum velocity.}$

Work Step by Step

$\text{Let's first find Amplitude and Time period for each graph given:}$ $\text{For the first graph:}$ $A_1 = A$ $\text{Say the time period is }T_1 =T$ $\text{For the second graph:}$ $A_1 = 3A$ $\text{The particle performs three oscillations in time T}$ $\therefore T_2 =\frac{T}{3}$ $\text{For the third graph:}$ $A_1 = 2A$ $\text{The particle performs tow oscillations in time T}$ $\therefore T_2 =\frac{T}{2}$ $\text{Maximum Velocity is given by }v_{max} = A\omega = \frac{A\times 2\pi}{T}$ $$\therefore v_{max}\propto \frac{A}{T}$$ $\text{So higher the A/T ratio, higher the max velocity}$ $\text{For particle 1}$ $$\frac{A_1}{T_1} = \frac{A}{T}$$ $\text{For particle 2}$ $$\frac{A_2}{T_2} = \frac{3A}{\frac{T}{3}} = \frac{9A}{T}$$ $\text{For particle 3}$ $$\frac{A_3}{T_3} = \frac{2A}{\frac{T}{2}} = \frac{4A}{T}$$ $\therefore \text{ Particle 2 will have the greatest maximum velocity.}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.