Physics (10th Edition)

Published by Wiley
ISBN 10: 1118486897
ISBN 13: 978-1-11848-689-4

Chapter 1 - Introduction and Mathematical Concepts - Problems - Page 23: 47

Answer

Magnitude = 4788 N, Direction = $67.2^{\circ}$ south of east

Work Step by Step

Here we use the component method to find the resultant force. The x component of the resultant force $F$ is, $F_{x}= 2240\space N\times cos34^{\circ}=2240\times 0.83=1857\space N$ The y component of the resultant force $F$ is, $F_{y}=-2240\space N\times sin34^{\circ}+(-3160\space N)=-4413\space N$ Using the Pythagorean theorem, we can get $F=\sqrt {(F_{x})^{2}+(F_{y})^{2}}=\sqrt {(1857\space N)^{2}+(-4413\space N)^{2}}=4788\space N$ Using trigonometry, we can get $tan\theta=(\frac{4413\space N}{1857\space N})=\gt\theta=tan^{-1}(2.4)=67.2^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.