Introduction to Electrodynamics 4e

Published by Pearson Education
ISBN 10: 9332550441
ISBN 13: 978-9-33255-044-5

Chapter 9 - Section 1.1 - Waves in One Dimension - Problem - Page 390: 1

Answer

$f_1(z, t) = A e^{-b(z-vt)^2} $, $f_2(z, t) = A\sin [b(z-vt)]$ and $f_3(z, t) = \frac{A}{b(z-vt)^2+1}$ satisfies the wave equation whereas $f_4(z, t) = A e^{-b(bz^2+vt)} $ and $f_5(z, t) = A \sin(bz)\cos(bvt)^3 $ doesn't satisfy the wave equation.

Work Step by Step

Wave equation is given by: $$ \frac{\partial^2 f}{\partial z^2} = \frac{1}{v^2}\frac{\partial^2 f}{\partial t^2} $$ For $f_1(z, t) = A e^{-b(z-vt)^2} $ $$ \frac{\partial f_1}{\partial z} = -2Ab(z-vt)e^{-b(z-vt)^2} $$ $$ \frac{\partial^2 f_1}{\partial z^2} = -2Abe^{-b(z-vt)^2}[(-2b)(z-vt)^2+1]\qquad ...(1)$$ $$ \frac{\partial f_1}{\partial t} = 2Abv(z-vt)e^{-b(z-vt)^2} $$ $$ \frac{\partial^2 f_1}{\partial t^2} = -2Abv^2e^{-b(z-vt)^2}[(-2b)(z-vt)^2+1]\qquad ...(2)$$ From equation $(1) \text{ and } (2)$, $$ \frac{\partial^2 f_1}{\partial z^2} = \frac{1}{v^2}\frac{\partial^2 f_1}{\partial t^2} $$ Hence $f_1$ satisfies the wave equation. For $f_2(z, t) = A\sin [b(z-vt)]$ $$\frac{\partial f_2}{\partial z} = Ab \cos[b(z-vt)]$$ $$\frac{\partial^2 f_2}{\partial z^2} = -Ab^2 \sin[b(z-vt)] \qquad ...(3)$$ $$\frac{\partial f_2}{\partial t} = -Abv \cos[b(z-vt)]$$ $$\frac{\partial^2 f_2}{\partial t^2} = -Ab^2v^2 \sin[b(z-vt)]\qquad ...(4)$$ From equation $(3) \text{ and } (4)$, $$ \frac{\partial^2 f_2}{\partial z^2} = \frac{1}{v^2}\frac{\partial^2 f_2}{\partial t^2} $$ Hence, $f_2$ satisfies wave equation. For $f_3(z, t) = \frac{A}{b(z-vt)^2+1}$ $$\frac{\partial f_3}{\partial z} = \frac{-2Ab(z-vt)}{(b(z-vt)^2+1)^2}$$ $$\frac{\partial^2 f_3}{\partial z^2} = \frac{-2Ab[1-3b(z-vt)^2]}{(1+b(z-vt)^2)^3} \qquad ...(5)$$ $$\frac{\partial f_3}{\partial t} = \frac{2Abv(z-vt)}{(b(z-vt)^2+1)^2}$$ $$\frac{\partial^2 f_3}{\partial t^2} = \frac{-2Abv^2[1-3b(z-vt)^2]}{(1+b(z-vt)^2)^3}\qquad ...(6)$$ From equation $(5) \text{ and } (6)$, $$ \frac{\partial^2 f_3}{\partial z^2} = \frac{1}{v^2}\frac{\partial^2 f_3}{\partial t^2} $$ Hence, $f_3$ satisfies wave equation. For $f_4(z, t) = A e^{-b(bz^2+vt)} $ $$ \frac{\partial f_4}{\partial z} = -2Ab^2ze^{-b(bz^2+vt)} $$ $$ \frac{\partial^2 f_4}{\partial z^2} = -2Ab^2e^{-b(bz^2+vt)}(1-2b^2z^2)\qquad ...(9)$$ $$ \frac{\partial f_4}{\partial t} = -2Abve^{-b(bz^2+vt)} $$ $$ \frac{\partial^2 f_4}{\partial t^2} =2Ab^2v^2e^{-b(bz^2+vt)}\qquad ...(10)$$ Clearly from equation $(9) \text{ and } (10)$, $$ \frac{\partial^2 f_5}{\partial z^2} \ne \frac{1}{v^2}\frac{\partial^2 f_4}{\partial t^2} $$ Hence $f_4$ does not satisfy the wave equation. For $f_5(z, t) = A \sin(bz)\cos(bvt)^3 $ $$ \frac{\partial f_5}{\partial z} = Ab\cos(bz)\cos(bvt)^3 $$ $$ \frac{\partial^2 f_5}{\partial z^2} = -Ab^2\sin(bz)\cos(bvt)^3\qquad ...(11)$$ $$ \frac{\partial f_5}{\partial t} = -3Abv(bvt)^2\sin(bz)\sin(bvt)^3 $$ $$ \frac{\partial^2 f_5}{\partial t^2} = -3Ab^2v^2(bvt)\sin(bz)[3(bvt)^3\cos(bvt)^3+2\sin(bvt)^3]\qquad ...(12)$$ Clearly from equation $(11) \text{ and } (12)$, $$ \frac{\partial^2 f_5}{\partial z^2} \ne \frac{1}{v^2}\frac{\partial^2 f_4}{\partial t^2} $$ Hence $f_5$ does not satisfy the wave equation.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.