Introduction to Electrodynamics 4e

Published by Pearson Education
ISBN 10: 9332550441
ISBN 13: 978-9-33255-044-5

Chapter 2 - Section 2.1 - Divergence and Curl of Electrostatic Fields - Problem - Page 70: 9

Answer

a) $\rho=5\epsilon_okr^{2}$ b)$Q_{enc}=4\pi\epsilon_okR^5$

Work Step by Step

a) $\rho=\epsilon_o\vec{\nabla}\cdot \vec{E}$ $\vec{E}=kr^3\hat{r}$ $\vec{\nabla}\cdot \vec{E}=\large\frac{1}{r^2}\frac{\partial}{\partial r}(\normalsize r^2E_r)+\large\frac{1}{r\sin{\theta}}\frac{\partial}{\partial \theta}(\normalsize\sin{\theta}E_\theta) +\large\frac{1}{r\sin{\theta}}\frac{\partial}{\partial \phi}(\normalsize E_\phi)$ $\because E_\theta=0$ , $E_\phi=0$ and $E_r=E\space(\equiv\left\lvert{\vec E}\right\rvert)$ $\therefore\vec{\nabla}\cdot \vec{E}=\large\frac{1}{r^2}\frac{\partial}{\partial r}(\normalsize r^2E)=\large\frac{1}{r^2}\frac{\partial}{\partial r}(\normalsize kr^5)=5kr^2$ $\Rightarrow\rho=5\epsilon_okr^{2}$ b) i)First way According to Gauss's law, $Q_{enc}=\epsilon_o\oint\vec{E}\cdot{\vec da}$ ${\vec da}=R^2\sin{\theta}d\theta d\phi\hat{r}$ $\Rightarrow Q_{enc}=kR^5\epsilon_o\int_{0}^{2\pi}d\phi\int_{0}^{\pi}\sin{\theta}d\theta=4\pi\epsilon_okR^5$ ii)Second way $Q_{enc}=\int\rho d\tau=\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{R}(5\epsilon_okr^{2})(r^2\sin{\theta}drd\theta d\phi)$ $\hspace{0.9cm}=\int_{0}^{2\pi}d\phi\int_{0}^{\pi}\sin{\theta}d\theta\int_{0}^{R}(5\epsilon_okr^{4})dr=4\pi\epsilon_okR^5$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.