Introduction to Electrodynamics 4e

Published by Pearson Education
ISBN 10: 9332550441
ISBN 13: 978-9-33255-044-5

Chapter 1 - Section 2.5 - Differential Calculus - Problem - Page 20: 18

Answer

a)$\vec{\nabla}\times\vec{v_a}=-6xz\hat{x}+2z\hat{y}+3z^2\hat{z}$ b)$\vec{\nabla}\times\vec{v_b}=-2y\hat{x}-3z\hat{y}-x\hat{z}$ c)$\vec{\nabla}\times\vec{v_c}=0$

Work Step by Step

a)$\vec{\nabla}\times\vec{v_a}=(\hat{x}\frac{\partial}{\partial{x}}+\hat{y}\frac{\partial}{\partial{y}}+\hat{z}\frac{\partial}{\partial{z}})\times(x^2\hat{x}+3xz^2\hat{y}−2xz\hat{z})$ $\hspace{1.8cm}=\hat{x}(0-6xz)+\hat{y}(0+2z)+\hat{z}(3z^2-0)$ $\hspace{1.8cm}=\hat{x}(-6xz)+\hat{y}(2z)+\hat{z}(3z^2)$ b)$\vec{\nabla}\times\vec{v_b}=(\hat{x}\frac{\partial}{\partial{x}}+\hat{y}\frac{\partial}{\partial{y}}+\hat{z}\frac{\partial}{\partial{z}})\times(xy\hat{x}+2yz\hat{y}+3xz\hat{z})$ $\hspace{1.8cm}=\hat{x}(0-2y)+\hat{y}(0-3z)+\hat{z}(0-x)$ $\hspace{1.8cm}=\hat{x}(-2y)+\hat{y}(-3z)+\hat{z}(-x)$ c)$\vec{\nabla}\times\vec{v_c}=(\hat{x}\frac{\partial}{\partial{x}}+\hat{y}\frac{\partial}{\partial{y}}+\hat{z}\frac{\partial}{\partial{z}})\times(y^2\hat{x}+(2xy+z^2)\hat{y}+2yz\hat{z})$ $\hspace{1.8cm}=\hat{x}(2z-2z)+\hat{y}(0-0)+\hat{z}(2y-2y)=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.