Introduction to Electrodynamics 4e

Published by Pearson Education
ISBN 10: 9332550441
ISBN 13: 978-9-33255-044-5

Chapter 1 - Section 2.2 - Differential Calculus - Problem - Page 16: 14

Answer

$\nabla $f transforms as a vector under rotations

Work Step by Step

$\bar y$ = +y cos $\phi$ + z sin $\phi$; multiply by sin $\phi$: y sin $\phi$ = +y sin$\phi$ cos $\phi$ + z $sin^2$ $\phi$. z = −y sin $\phi$+ z cos $\phi$; multiply by cos $\phi$: z cos $\phi$ = −y sin $\phi$ cos $\phi$ + z $cos^2$ $\phi$ Add: y sin $\phi$ + z cos $\phi$ = z($sin^2$ $\phi$ + $cos^2$ $\phi$) = z Likewise, y cos $\phi$ − z sin $\phi$ = y. So $\frac{\partial y}{\partial\bar y}$ = cos $\phi$; $\frac{\partial y}{\partial z}$ = -sin $\phi$; $\frac{\partial z}{\partial \bar y}$ = sin $\phi$; $\frac{\partial z}{\partial \bar z}$ = cos $\phi$; Therefore $\overline { (\nabla f)}_y$ = $\frac{\partial f}{\partial\bar y}$ = $\frac{\partial f}{\partial y}$ $\frac{\partial y}{\partial\bar y}$ + $\frac{\partial f}{\partial z}$ $\frac{\partial z}{\partial\bar y}$ = + cos $\phi$ $ (\nabla f)_y$ + sin $\phi$ $ (\nabla f)_z$ and $\overline { (\nabla f)}_z$ = $\frac{\partial f}{\partial\bar z}$ = $\frac{\partial f}{\partial y}$ $\frac{\partial y}{\partial\bar z}$ + $\frac{\partial f}{\partial z}$ $\frac{\partial z}{\partial\bar z}$ = - sin $\phi$ $ (\nabla f)_y$ + cos $\phi$ $ (\nabla f)_z$ So $\nabla f$ transforms as a vector
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.