Introduction to Electrodynamics 4e

Published by Pearson Education
ISBN 10: 9332550441
ISBN 13: 978-9-33255-044-5

Chapter 1 - Section 1.4 - Vector Algebra - Problem - Page 9: 7

Answer

$\textbf{r}_{separation vector}=(2\hat{x}-2\hat{y}+\hat{z})$ Magnitude of the separation vector: $|\textbf{r}_{separation vector}|=r_{separation vector}=3$ Unit vector: $\hat{\textbf{r}}_{separation vector}=\large(\frac{2\hat{x}}{3}-\frac{2\hat{y}}{3}+\frac{\hat{z}}{3})$

Work Step by Step

$\textbf{r}_{separation vector}=(4\hat{x}+6\hat{y}+8\hat{z})-(2\hat{x}+8\hat{y}+7\hat{z}) = (2\hat{x}-2\hat{y}+\hat{z})$ Magnitude of the separation vector: $|\textbf{r}_{separation vector}|=r_{separation vector}=\sqrt{2^{2}+(-2)^{2}+1^{2}}=\sqrt{4+4+1}=\sqrt{9}=3$ Unit vector: $\hat{\textbf{r}}_{separation vector}=\large\frac{\textbf{r}_{separation vector}}{|\textbf{r}_{separation vector}|}=\frac{(2\hat{x}-2\hat{y}+\hat{z})}{3}=(\frac{2\hat{x}}{3}-\frac{2\hat{y}}{3}+\frac{\hat{z}}{3})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.