Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 8 - Potential Energy and Conservation of Energy - Problems - Page 205: 40a

Answer

${r_e} =\sqrt[6] \frac{2A}{B} $

Work Step by Step

Let $r_e$ = equilibrium seperation $F = - \frac{dU}{dr}_{_{r=r_e}} =0$ $ \frac{dU}{dr}_{_{r=r_e}} =-0$ $\frac{d}{dr}(\frac{A}{r^{12}} - \frac{B}{r^6})=0$ $\frac{d}{dr}(\frac{A}{r^{12}} - \frac{B}{r^6})= 0$ $\frac{6B}{r^{7}_e}-\frac{12A}{r^{16}_e} =0$ $\frac{1}{r^{7}_e}({6B}-\frac{12A}{r^{6}_e}) =0$ $({6B}-\frac{12A}{r^{6}_e}) =0 \times {r^{7}_e}$ $({6B}-\frac{12A}{r^{6}_e}) =0 $ Multiply the equation by ${r^{6}_e}$: $({6B}{r^{6}_e}-{12A}) =0 \times {r^{6}_e} $ $({6B}{r^{6}_e}-{12A}) =0 $ ${6B}{r^{6}_e} ={12A}) $ ${r^{6}_e} =\frac{12A}{6B} $ ${r^{6}_e} =\frac{2A}{B} $ ${r_e} =\sqrt[6] \frac{2A}{B} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.