Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 8 - Potential Energy and Conservation of Energy - Problems - Page 204: 29b

Answer

$$v_{B}=1.69 \mathrm{m} / \mathrm{s} \approx 1.7 \mathrm{m} / \mathrm{s}$$

Work Step by Step

From this result, we find $l_{0}=x_{0}=0.347 \mathrm{m}-0.055 \mathrm{m}=0.292 \mathrm{m},$ which means that the block has descended a vertical distance $$ |\Delta y|=h_{A}-h_{B}=l_{0} \sin \theta=(0.292 \mathrm{m}) \sin 30^{\circ}=0.146 \mathrm{m} $$ in sliding from point $A$ to point $B .$ Thus, using Eq. $8-18,$ we have $$ 0+m g h_{A}=\frac{1}{2} m v_{B}^{2}+m g h_{B} \Rightarrow \frac{1}{2} m v_{B}^{2}=m g|\Delta y| $$ which yields $$v_{B}=\sqrt{2 g|\Delta y|}=\sqrt{2\left(9.8 \mathrm{m} / \mathrm{s}^{2}\right)(0.146 \mathrm{m})}=1.69 \mathrm{m} / \mathrm{s} \approx 1.7 \mathrm{m} / \mathrm{s}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.