Fundamentals of Physics Extended (10th Edition)

Published by Wiley
ISBN 10: 1-11823-072-8
ISBN 13: 978-1-11823-072-5

Chapter 10 - Rotation - Questions - Page 287: 12

Answer

$I_{b} > I_{c} > I_{a}$

Work Step by Step

Moment of inertia of cylinders about their central axes is: $I=\dfrac {mR^{2}}{2}$ Given the values, the moment of inertia is calculated as: $I_{a}=\dfrac {m_{1}R^{2}_{1}}{2}=\dfrac {26kg\times 1m^{2}}{2}=13kgm^{2}\left( 1\right) $ $I_{b}=\dfrac {m_{2}R^{2}_{2}}{2}=\dfrac {7kg\times\left( 2m\right) ^{2}}{2}=14kgm^{2}(2)$ $I_{c}=\dfrac {m_{3}R^{2}_{3}}{2}=\dfrac {3kg\times\left( 3m\right) ^{2}}{2}=13,5kgm^{2}\left( 3\right) $ So from (1),(2) and (3) we get $I_{b} > I_{c} > I_{a}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.